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Magnetic Field 
Stellar Dynamo 

Gary A. Glatzmaier I 

Propagation in a 

Numerical simulations of stellar dynamos are reviewed. Dynamic dynamo 
models solve the nonlinear, three-dimensional, time-dependent, 
magnetohydrodynamic equations for the convective velocity, the ther- 
modynamic variables, and the generated magnetic field in a rotating, spherical 
shell of ionized gas. When the dynamo operates in the convection zone, the 
simulated magnetic fields propagate away from the equator in the opposite 
direction inferred from the solar butterfly diagram. When simulated at the base 
of the convection zone, the fields propagate in the right direction at roughly the 
right speed. However, owing to the numerical difficulty, a full magnetic cycle has 
not been simulated in this region. As a result, it is still uncertain where and how 
the solar dynamo operates. 
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1. I N T R O D U C T I O N  

The understanding of the basic mechanisms of a stellar dynamo, especially 
the solar dynamo, has been the object of considerable effort in recent years 
owing to the lack of a self-consistent explanation of the solar butterfly 
diagram. This diagram is a record of where, in solar latitude, sunspots have 
been observed as a function of time. It clearly depicts the 11-year period in 
the total sunspot area and the equatorward drift of the active solar latitude 
during each eleven years. The Sun's 22-year magnetic cycle (1) was dis- 
covered by observing the polarity configuration of sunspot groups. 
Buoyant magnetic flux tubes presumably break away from a main toroidal 
magnetic field below the surface and emerge as sunspots. Duing the first 
half of the magnetic cycle, the polarity configuration of the leading and 
following sunspots is the same for each group in the northern hemisphere 
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while the sunspot groups in the southern hemisphere have the opposite 
configuration; the pattern is reversed during the second half of the cycle. 
To satisfy this polarity law, two oppositely directed toroidal fields, one in 
each hemisphere, are assumed to propagate from midlatitude to the 
equator in eleven years followed by a similar scenario during the next 
eleven years with the opposite polarity. ~2'3) 

Parker ~4) proposed an explanation for the maintenance of a cyclic 
stellar magnetic field. He assumed that the radial and latitudinal variation 
in the rotation rate, i.e., the differential rotation, generates a toroidal, i.e., 
longitudinal, magnetic field by shearing the poloidal, i.e., meridional, 
magnetic field and that helical convective motions regenerate a reversed 
poloidal field by twisting the toroidal field. In addition, the magnetic fields 
are assumed to be continuously diffusing away via magnetic eddy diffusion. 
This explanation predicts a field propagation toward the equator if angular 
velocity increases with depth and left-handed (right-handed) fluid motions 
dominate in the northern (southern) hemisphere; or vice versa. Also, the 
larger the helicity and differential rotation, the shorter the period of the 
magnetic cycle. In addition, it must be assumed that the effect of helicity is 
small relative to differential rotation because helicity can also generate a 
toroidal magnetic field by twisting the poloidal field, and this effect usually 
inhibits magnetic field propagation. 

Dynamo models have been developed to test this hypothesis. The vast 
majority of these models have been kinematic models ~5-9) which obtain an 
axisymmetric magnetic field from a linear magnetic induction equation that 
is tuned by independently parametrizing the effects of differential rotation 
and helicity. These models have been relatively successful in simulating a 
dynamo wave that propagates toward the equator with about the fight 
period. Usually helicity is assumed to be left-handed in the northern 
hemisphere and right-handed in the southern hemisphere because the 
Coriolis forces resulting from the expansion (contraction) of rising 
(sinking) gas in a stratified, rotating convection zone wilt produce such a 
helicity profile. Consequently, in order to get the magnetic fields to 
propagate toward the equator, angular velocity is assumed to increase with 
depth through the convection zone. 

Another approach to modeling a stellar dynamo has been to solve a 
set of truncated, nonlinear dynamo equations. Although much of the 
physics is removed in such a model, enough is retained to study the non- 
linear effects of the feedbacks between the velocity and magnetic fields that 
are responsible for the variation in cycle period and amplitude. This 
approach is reviewed by N. O. Weiss in this issue. 

Dynamic dynamo models simultaneously and self-consistently solve 
the magnetohydrodynamic equations for the velocity, thermodynamic 
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variables, and the magnetic field with full nonlinear feedback, in three 
dimensions and time, explicitly including the effects of spherical geometry 
and rotation. Dynamic models for a Boussinesq fluid, (1~ having no basic 
density stratification, and for an anelastic gas, (12'13) having a significant 
density stratification, have numerically simulated dynamos in rotating con- 
vection zones; however, the simulated magnetic fields propagate away from 
the equator (contrary to what is inferred from the solar butterfly diagram) 
with a period shorter than 22 years. The reason for this is that, although 
the simulated helicity in dynamic models is left-handed (right-handed) in 
the northern (southern) hemisphere as assumed in the kinematic models, 
the simulated angular velocity decreases with depth. In addition, since the 
simulated helicity in the convection zone is larger than assumed in 
kinematic models, the simulated magnetic fields propagate too fast. 

Those who model kinematic dynamos have argued that the differential 
rotation profile numerically simulated in dynamic models must not be 
correct. However, the latitudinal variation in angular velocity at the surface 
is in agreement with Doppler measurements of the solar surface rotation 
rate (14) and the radial variation is in agreement with a recent analysis (15~ of 
the rotational frequency splitting of solar oscillations. (~6) Physical 
explanations, based on the analysis of three-dimensional numerical 
simulations, (1~ have been made for the maintenance of these profiles. 

In an attempt to resolve this problem and others concerning the real 
possibility that the solar convection zone is too turbulent to maintain 
large-scale magnetic fields, it has been proposed that the solar dynamo may 
be operating at the base of the convection zone in the transition region 
between the stable interior and the turbulent convective region. (~v-19/ 
Dynamic dynamo simulations at the base of the convection zone (2~ sup- 
port this hypothesis; however, owing to the limited numerical resolution of 
the small amplitude motions in the stable region, a full magnetic cycle was 
not simulated. 

I will review some of the dynamic dynamo simulations. First I will 
describe those with the dynamo operating in the convection zone; then 
those with the dynamo operating at the base of the convection zone. 

2. IN T H E  C O N V E C T I O N  Z O N E  

Gilman's (1~ pioneering work on dynamically consistent dynamo 
simulations for a rotating, spherical fluid shell governed by the three- 
dimensional, nonlinear, magnetohydrodynamic equations has 
demonstrated that the mechanisms suggested by Parker (4) can maintain a 
self-excited cyclic dynamo. A magnetic field is generated by the shearing 
and transport mechanisms of the differential rotation and convective 
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motions. It grows until the Lorentz forces become large enough to alter the 
fluid motions that maintain the field. This nonlinear feedback produces 
time-dependent kinetic and magnetic energies. Although beautiful 
simulations were obtained over several cycles, the magnetic fields 
propagate away from the equator in the opposite direction inferred from 
the solar butterfly diagram with a period about an order of magnitude 
shorter than the solar period. 

I developed a dynamic dynamo model (12) that differs from Gilman's in 
several ways. The numerical technique is based on a spectral representation 
with a semi-implicit time-integration scheme, whereas Gilman's model is 
based on a finite difference representation with an explicit time-integration 
scheme. The major difference is that I model an anelastic fluid which 
accounts for the effects of a large density stratification. (Gilman has since 
converted his Boussinesq model to an anelastic model.) However, my 
anelastic dynamo model also produces magnetic fields that propagate away 

Differential Rotation Kine t i c  He l ic i ty  

(a) (b) 
Fig. 1. From Glatzmaier. (13) (a) Solid (broken) contours represent positive (negative) 
angular velocity relative to the rotating frame of reference. (b)Solid (broken) contours 
represent positive (negative) helicity averaged in longitude. 
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from the equatorJ la) Although I have not simulated a complete magnetic 
cycle, the fields appear to propagate at about twice the speed observed on 
the sun. 

The simulated differential rotation and helicity profiles are illustrated 
in Fig. 1 for the anelastic model and in Fig. 21 of Ref. 10 for the Boussinesq 
model. As indicated in both figures, angular velocity increases with distance 
from the rotation axis, in agreement with what is inferred from the fre- 
quency splitting of solar oscillations. (15'16~ At the surface, angular velocity 
increases toward the equator in agreement with Doppler measurements of 
the solar surface rotation rate. (14) These figures also illustrate how helicity, 
which is the dot product of velocity and its curl, tends to be negative, left- 
handed in the northern hemisphere and positive, right-handed in the 
southern hemisphere. Helicity in Fig. 1 peaks near the surface because, due 
to mass conservation, fluid velocity is large where the mass density is small. 
These profiles of differential rotation and helicity have evolved because of 
the effects of rotation, spherical geometry, and density stratification/1~3) 

Now consider how these velocity profiles maintain propagating 
magnetic fields. Typical axisymmetric parts of the toroidal and poloidal 
magnetic fields are illustrated in Fig. 2 and in Fig. 10 of Ref. 11. Toroidal 

Toroidal Magnetic Field 

Fig. 2. 

Poloidal Magnetic Field 
(contours) Oines of force) 

From Glatzmaier. (13) Solid (broken) contours represent the toroidal magnetic field 
into (out of) the paper. Lines of force represent the poloidal magnetic field. 
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fields are generated by rotationally shearing the poloidal fields. As dis- 
cussed by Gilman II1~ and Glatzmaier,/13) this tends to enhance the toroidal 
fields on their poleward sides and destroy them on their equatorward sides. 
As a result, the toroidal field pattern propagates away from the equator. 
The poloidal field is regenerated with the opposite polarity by the helical 
fluid motions which twist the toroidal field. The resulting phase 
propagation of the simulated magnetic field is illustrated in Fig. 3 of Ref. 13 
and in Figs. 10 and 11 of Ref. 11. However, as already mentioned, these 
fields are propagating in the opposite direction inferred from the solar but- 
terfly diagram. 

3. AT  THE BASE OF THE C O N V E C T I O N  ZONE 

In an attempt to resolve this problem, I modeled a dynamic dynamo 
in the convective overshooting region, i.e., the inner half of the spherical 
shell, by numerically decoupling the velocity and magnetic fields in the 
outer (superadiabatic) half of the shelU 2~ If the solar convection zone is 
turbulent enough to concentrate the majority of the magnetic flux into thin 
tubes as observed on the solar surface, (21) the velocity and magnetic fields 
will be spatially separated and physically decoupled to some extent. (19) 

Again, the two major factors responsible for magnetic field 
propagation are differential rotation and helicity. Angular velocity in the 
inner part of the shell decreases with depth as it does in the outer part; 
however, helicity tends to have the opposite sign in the inner part of the 
shell (Fig. 1). Fluid tends to converge while sinking through the stratified- 
convection zone but diverges slightly as it terminates its descent near the 
base of the convective cells, and vice versa for rising fluid. Consequently, 
the Coriolis forces cause the fluid to twist in one direction as it sinks 
through the outer part of the shell and in the opposite direction as it sinks 
through the inner part. As explained by Glatzmaier, (2~ the simulated 
magnetic fields at the base of the convection zone are enhanced on their 
equatorward sides and destroyed on their poleward sides; consequently, 
they propagate toward the equator. In addition, due to the small amplitude 
of the simulated helicity in this region, the fields initially propagated at 
roughly the right phase speed. However, due to the limited numerical 
resolution of the small amplitude helical fluid motions in the stable inner 
part of the shell, only a fraction of a magnetic cycle could be simulated. 

4. S U M M A R Y  

I have briefly reviewed three-dimensional, nonlinear simulations of 
dynamic dynamos operating in the convection zone, where the simulated 
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magnetic fields propagate too fast and in the wrong direction, and at the 
base of the convection zone where the initial propagation is in the fight 
direction and at roughly the right speed. Although these simulations 
suggest that the solar dynamo may be seated at the base of the convection 
zone, it is uncertain how Hale's polarity law (1) for sunspot groups observed 
on the solar surface could be maintained so well by flux tubes originating 
at the base of the convection zone. On the other hand, the dynamo may be 
operating in the outer 5% of the sun (by radius), where angular velocity 
appears to be increasing with depth. (15'22) We have been unable to study 
this hypothesis with our global models owing to the large numerical 
resolution requirements in this rapidly varying, thin, outer layer. However, 
if the dynamo were operating in this top layer with concentrated magnetic 
flux tubes, the mechanism probably would be quite different from what is 
represented by current dynamo theory. 
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